Là một người luôn tìm hiểu về dữ liệu, yêu thích toán và thống kê hẳn là không lạ lẫm với các phần mềm thống kê được sử dụng phổ biến hiện nay. Để tìm hiểu, tôi đã đưa ra bản so sánh các phần mềm thống kê này với nhau (Lưu ý tác giả không khuyến khích sử dụng bất kỳ phần mềm nào, tùy thuộc vào nhu cầu của từng người mà sử dụng)
Phần mềm
|
Ưu điểm
|
Nhược điểm
|
SAS
|
- SAS rất mạnh trong lĩnh vực quản lý dữ liệu, cho phép người sử dụng thao tác dữ liệu hầu như với mọi cách có thể
– SAS có thể làm việc với nhiều file dữ liệu cùng một lúc; điều này giảm đi tính phức tạp trong chuẩn bị dữ liệu đối với những nhiệm vụ phân tích đòi hỏi phải làm việc với nhiều file dữ liệu cùng một lúc.
– SAS có thể quản lý những file dữ liệu khổng lồ lên đến 32.768 biến và số lượng bản ghi là rất lớn chỉ phụ thuộc vào kích cỡ của đĩa cứng.
– Đối với phân tích thống kê, sức mạnh lớn nhất của SAS có thể tìm thấy trong phân tích ANOVA, phân tích mô hình hỗn hợp và phân tích nhiều chiều.
– SAS có các công cụ vẽ đồ thị mạnh nhất (SAS/Graph) so với hai bộ chương trình còn lại.
|
– Mất nhiều thời gian để học và hiểu được cách quản lý dữ liệu của SAS và nhiều nhiệm vụ quản lý phức tạp của nó lại được thực hiện bằng những lệnh đơn giản trong SPSS và STATA
– Yếu đối với hồi qui logistic kiểu thứ tự và kiểu phạm trù (vì các lệnh này là đặc biệt khó) và các phương pháp ước lượng mạnh.
– Nó cũng có hỗ trợ một ít cho phân tích dữ liệu theo lược đồ mẫu, nhưng lại hạn chế hơn so với STATA.
|
SPSS
|
– SPSS có một bộ soạn thảo dữ liệu tương tự như excel, bộ soạn thảo cho phép vào các dữ liệu và mô tả các thuộc tính của chúng, chính vì vậy SPSS khá dễ sử dụng.
– Sức mạnh lớn nhất của SPSS là lĩnh vực phân tích phương sai (SPSS cho phép thực hiện nhiều loại kiểm định tác động riêng biệt) và phân tích nhiều chiều (thí dụ phân tích phương sai nhiều chiều, phân tích nhân tố, phân tích nhóm tổ).
– SPSS có một giao diện giữa người và máy rất đơn giản để tạo ra các đồ thị và khi đã tạo được một đồ thị, nhờ giao diện này mà người sử dụng có thể tuỳ ý hiệu chỉnh đồ thị cũng như hoàn thiện chúng. Các đồ thị có chất lượng rất cao và có thể dán vào các tài liệu khác, thí dụ như Word hoặc Powerpoint.
|
– Cái yếu nhất của SPSS là khả năng xử lý đối với những vấn đề ước lượng phức tạp và do đó khó đưa ra được các ước lượng sai số đối với các ước lượng này.
– SPSS cũng không hỗ trợ các công cụ phân tích dữ liệu theo lược đồ mẫu.
– SPSS không có công cụ quản lý dữ liệu thật mạnh
– SPSS xử lý mỗi file dữ liệu ở một thời điểm và không phải là rất mạnh khi thực hiện các nhiệm vụ phân tích cần làm việc với nhiều file dữ liệu cùng một lúc. Các file dữ liệu có thể có đến 4096 biến và số lượng bản ghi chỉ bị giới hạn trong dung lượng của đĩa cứng.
– Ngôn ngữ cú pháp của SPSS phức tạp hơn so với STATA, nhưng lại có phần đơn giản hơn, ít mạnh hơn SAS.
|
STATA
|
– Cho phép thực hiện các thao tác phức tạp về dữ liệu một cách dễ dàng.
– Sức mạnh lớn nhất của STATA là hồi qui (rất dễ sử dụng các công cụ đoán nhận hồi qui), hồi qui logistic (những bổ sung mới làm đơn giản hoá việc giải thích kết quả hồi qui logistic, còn hồi qui logistic thứ tự và hồi qui logistic phạm trù là rất dễ thực hiện).
– STATA cũng có nhiều phương pháp ước lượng mạnh rất dễ sử dụng, bao gồm cả hồi qui mạnh và hồi qui với sai số chuẩn mạnh, và nhiều lệnh ước lượng khác kèm theo sai số chuẩn mạnh.
– STATA cũng trội hơn về lĩnh vực phân tích dữ liệu theo lược đồ mẫu, cho khả năng áp dụng chúng trong phân tích số liệu điều tra bởi các công cụ hồi qui, hồi qui logistic, hồi qui poisson, hồi qui probit,…
– Các đồ thị STATA còn có chức năng bổ sung cho phân tích thống kê, thí dụ như có nhiều lệnh làm đơn giản hoá việc tạo ra các đồ thị chẩn đoán hồi qui.
– Cú pháp của các lệnh đồ thị là dễ sử dụng nhất trong số ba bộ chương trình và cũng là mạnh nhất. Các đồ thị STATA có chất lượng cao và chất lượng xuất bản cũng cao.
|
– STATA hoàn toàn không có khả năng quản lý dữ liệu mạnh như SAS, nhưng các lệnh quản lý dữ liệu của nó vẫn có nhiều sức mạnh, lại rất đơn giản.
– Tuy nhiên, mỗi thời điểm STATA chỉ làm việc được với một file dữ liệu, vì vậy những nhiệm vụ xử lý cần nhiều file dữ liệu cùng một lúc đối với STATA là phức tạp hơn.
– Điểm yếu nhất là khả năng phân tích phương sai và phân tích nhiều chiều truyền thống như phân tích phương sai nhiều chiều, phân tích nhóm tổ.
– Các đồ thị của STATA không thể hiệu đính bằng bộ hiệu đính đồ thị.
|
R
|
– R có lợi thế là khả năng phân tích biểu đồ tuyệt vời. Không một phần mềm nào có thể sánh với R về phần biểu đồ
– R gắn liền với giới học thuật, hầu hết những mô hình thống kê mới nhất đều được hỗ trợ bởi R.
– Chạy được trên nhiều hệ điều hành
– Số 1 trong các phần mềm miễn phí
|
– R có cái bất lợi là dùng lệnh chứ không dùng menu như Excel. Điều này có nghĩa là đối với người “lười biếng” thì sẽ thấy R bất tiện. Nhưng với người muốn nắm lấy những cơ chế căn bản của toán học, thì sẽ thích ngôn ngữ này ngay.
– Người dùng phải có hiểu biết cao về kinh tế lượng, thống kê và khả năng lập trình vì trong phân tích đòi hỏi người dùng phải dùng các mã code để thực hiện các bước ước lượng và kiểm định hay phân tích các vấn đề cần thiết trong dữ liệu.
|
Nhận xét
Đăng nhận xét